simshadows

Math Scrap 2

Consider an arbitrary load (potentially both resistive and reactive) where:

v(t)=Vmcos(ωt+θv)i(t)=Imcos(ωt+θi)\begin{gather*} v(t) = V_m \cos{(\omega t + \theta_v)} \\ i(t) = I_m \cos{(\omega t + \theta_i)} \end{gather*}

Instantaneous power is given by:

p(t)=v(t) i(t)=VmImcos(ωt+θv)cos(ωt+θi) p(t) = v(t)\ i(t) = V_m I_m \cos{(\omega t + \theta_v)} \cos{(\omega t + \theta_i)}

Find the average power delivered to this load.

We can apply the following product-to-sum identity:

2cosAcosB=cos(A+B)+cos(AB)p(t)=VmIm2[cos(2ωt+θv+θi)+cos(θvθi)]\begin{gather*} \boxed{ 2 \cos{A} \cos{B} = \cos{(A+B)} + \cos{(A-B)} } \\ p(t) = \frac{V_m I_m}{2} \brackets{\cos{(2 \omega t + \theta_v + \theta_i)} + \cos{(\theta_v - \theta_i)}} \end{gather*}

To make things simpler, let’s define the power angle θ\theta:

θ:=θvθiθi=θvθ \theta := \theta_v - \theta_i \qquad \Longrightarrow \qquad \theta_i = \theta_v - \theta

Substituting into p(t)p(t) then applying the following compound angle identity:

cos(αβ)=cosαcosβ+sinαsinβp(t)=VmIm2[cos([2ωt+2θv]θ)+cos(θ)]=VmIm2[cos(2ωt+2θv)cos(θ)+sin(2ωt+2θv)sin(θ)+cos(θ)]=VmIm2cos(θ)[cos(2ωt+2θv)average value=0+1]+VmIm2sin(θ)sin(2ωt+2θv)average value=0\begin{gather*} \boxed{ \cos{(\alpha - \beta)} = \cos{\alpha} \cos{\beta} + \sin{\alpha} \sin{\beta} } \\ \begin{aligned} p(t) &= \frac{V_m I_m}{2} \brackets{\cos{\parens{[2 \omega t + 2 \theta_v] - \theta}} + \cos{(\theta)}} \\ &= \frac{V_m I_m}{2} \brackets{\cos{(2 \omega t + 2 \theta_v)} \cos{(\theta)} + \sin{(2 \omega t + 2 \theta_v)} \sin{(\theta)} + \cos{(\theta)}} \\ &= \frac{V_m I_m}{2} \cos{(\theta)} \brackets{\underbrace{\cos{(2 \omega t + 2 \theta_v)}}_{\text{average value} = 0} + 1} + \frac{V_m I_m}{2} \sin{(\theta)} \underbrace{\sin{(2 \omega t + 2 \theta_v)}}_{\text{average value} = 0} \end{aligned} \end{gather*}

To find average power, we notice that two time-dependent sinusoids have average values of zero, therefore our average power PP is:

P=VmIm2cos(θ) P = \frac{V_m I_m}{2} \cos{(\theta)}